A Brief History of Elliptic Integral Addition Theorems
نویسنده
چکیده
The discovery of elliptic functions emerged from investigations of integral addition theorems. An addition theorem for a function f is a formula expressing f(u+ v) in terms of f(u) and f(v). For a function defined as a definite integral with a variable upper limit, an addition theorem takes the form of an equation between the sum of two such integrals, with upper limits u and v, and an integral whose upper limit is a certain function of u and v. In this paper, we briefly sketch the role which the investigation of such addition theorems has played in the development of the theory of elliptic intgrals and elliptic functions. 1 What is an Addition Theorem? Consider the following equation involving an integral familiar to calculus students: ∫ sinu 0 1 √ 1− x2 dx+ ∫ sin v 0 1 √ 1− x2 dx = ∫ sin(u+v)
منابع مشابه
Existence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملIntegral representations and Liouville theorems for solutions of periodic elliptic equations
The paper contains integral representations for certain classes of exponentially growing solutions of second order periodic elliptic equations. These representations are the analogs of those previously obtained by S. Agmon, S. Helgason, and other authors for solutions of the Helmholtz equation. When one restricts the class of solutions further, requiring their growth to be polynomial, one arriv...
متن کاملRandom fixed point theorems with an application to a random nonlinear integral equation
In this paper, stochastic generalizations of some fixed point for operators satisfying random contractively generalized hybrid and some other contractive condition have been proved. We discuss also the existence of a solution to a nonlinear random integral equation in Banah spaces.
متن کاملCoupled fixed point theorems involving contractive condition of integral type in generalized metric spaces
In this manuscript, we prove some coupled fixed point theorems for two pairs of self mappings satisfying contractive conditions of integral type in generalized metric spaces. We furnish suitable illustrative examples. In this manuscript, we prove some coupled fixed point theorems for two pairs of self mappings satisfying contractive conditions of integral type in generalized metric spaces. We f...
متن کامل